Basic definitions for organic chemistry

- **Scope** Organic chemistry is a vast subject so is split it into small sections for study. This is done by studying compounds which behave in a similar way because they have a particular atom, or group of atoms, (FUNCTIONAL GROUP) in their structure.
- **Catenation** The **ability to form bonds between atoms of the same element**. Carbon catenates to form chains and rings, with single, double or triple covalent bonds.
 - *Q.1* Why does carbon form so many catenated compounds ?
 - Why does silicon undergo catenation to a lesser extent than carbon ?

Homologous

Series A series of organic compounds having the same functional group and each member differs from the next by CH_2 .

- all share the same general formula
- formulae differ from their neighbours by CH_2 . (e.g. CH_4 , C_2H_6 , ... etc.)
- contain the same functional group(s)
- have similar chemical properties
- show a gradual change in physical properties as molar mass increases
- can usually be prepared by similar methods.

Functional

Group

A group of atoms responsible for the characteristic reactions of a compound.

- can consist of one atom
 - a group of atoms OH

— Br

- multiple bonds between carbon atoms C=C
- each functional group has its own distinctive properties

Q.2 The following list contains some molecular formulae. Draw out as many legitimate structures for each and classify each compound made according to the functional group present. Remember that carbon atoms will have four covalent bonds surrounding them, oxygen atoms will have two, nitrogen atoms three and hydrogen atoms and halogen atoms just one.

 $C_2H_6 \qquad C_4H_{10} \qquad C_4H_8 \qquad C_2H_6O \qquad C_3H_6O \qquad C_2H_7N \qquad C_2H_4O_2 \qquad C_2H_3N$

1

Some common functional groups

F322

GROUP	ENDING	GEN. FORMULA	STRUCTURE	EXAMPL	.E
ALKANE	- ane	RH	C-C	C_2H_6	ethane
ALKENE	- ene		C=C	C_2H_4	ethene
ALKYNE	- yne		C≡C	C_2H_2	ethyne
HALOALKANE	halo -	RX	C – Cl	C_2H_5CI	chloroethane
ALCOHOL	- ol	ROH	-0-H	C_2H_5OH	ethanol
ALDEHYDE	-al	RCHO	-c ^{_H} _0	CH₃CHO	ethanal
KETONE	- one	RCOR	C C=O	CH ₃ COCH ₃	propanone
CARBOXYLIC ACID	- oic acid	RCOOH	-c ^{_O-H}	CH3COOH	ethanoic acid
ACYL CHLORIDE	- oyl chloride	RCOCI	-c ^{CI}	CH₃COCI	ethanoyl chloride
AMIDE	- amide	RCONH₂	-C ^{/NH} 2	CH ₃ CONH ₂	ethanamide
ESTER	- yl - oate	RCOOR	-c_0-R	CH ₃ COOCH ₃	methyl ethanoate
NITRILE	- nitrile	RCN	−C≡N	CH₃CN	ethanenitrile
AMINE	- amine	RNH₂	$C - NH_2$	CH_3NH_2	methylamine
NITRO	- nitro	RNO ₂	-N_0_	CH_3NO_2	nitromethane
SULPHONIC ACID	- sulphonic acid	RSO₃H	0 -S-OH 0	C ₆ H₅SO₃H	benzene sulphonic acid
ETHER	- oxy - ane	ROR	R-O-R	$C_2H_5OC_2H_5$	ethoxyethane

The symbol R represents groups of carbon and hydrogen atoms in the rest of the molecule

2 ·

F322

Use of different formulae in organic chemistry

General	the simplest algebraic formula for a member of a homologous series		C_nH_{2n+2} C_nH_{2n}	for an alkane for an alkene
Molecular	shows the exact number of atoms of each element in a molecule		C_4H_{10}	for butane
Empirical	shows the simplest whole number ratio of atoms of each element in a molecule		C_2H_5	for butane
Structural	the minimal detail that shows the arrangement of atoms in a molecule	CH₃CH₂CI CH₃CHOH	H₂CH₃ ICH₃	butane propan-2-ol
Displayed	shows the relative positioning of atoms and the number of bonds between them	H H H-C-C H H	H H - C - C - I I H H	H butane
Skeletal	 used to show a simplified organic formula by removing hydrogen atoms from alkyl chains, leaving just a carbon skeleton and associated functional groups. each covalent bond is shown by a line a carbon atom is at the join of lines functional groups are shown the number of hydrogen atoms on each carbon atom is the difference between the number of lines and 4 		ОН	cyclohexane cyclohexene cyclohexanol
	Skeletal formulae tend to be used with larger organic molecules - e.g. <i>thalidomide</i>	e	ОН	butan-1-ol

- 3

Catoms Alkane

methane

ethane

butane

pentane

hexane

heptane

octane

nonane

decane

propane

1

2

3

4

5

6

7

8

9

10

Nomenclature in organic chemistry

Systems A naming system must tell you everything about a structure without ambiguity. There are two types of naming system commonly found in organic chemistry;

Trivial :based on some property or historical aspect;
the name tells you little about the structure

Systematic : based on an agreed set of rules (I.U.P.A.C); exact structure can be found from the name (and vice-versa).

Series	trivial name	systematic name	example(s)	
	paraffin	alkane	methane, butane	
	olefin	alkene	ethene, butene	
	fatty acid	alkanoic (carboxylic) acid	ethanoic acid	
Compounds	<i>trivial name</i> acetic acid	<i>derivation</i> acetum = vinegar (Lat.)	systematic name ethanoic acid (CH ₃ COOH)	

Systematic (IUPAC) Nomenclature

Δ

STEM Shows the number of carbon atoms in longest chain bearing the functional group + (if necessary) a prefix showing the position and identity of any substituents

Nomenclature	Apart from the first four, which retain trivial names, the number of carbons atoms is indicated by a prefix derived from the Greek numbering system.	
	 the list of alkanes demonstrate the use of prefixes 	prop- but-
	 the ending is the same as they are all alkanes 	hex- hept- oct- non- dec-

SUFFIX The ending tells you which functional group is present

Nomenclature If any functional groups are present, add relevant ending to the basic stem. The position of the functional group must be given to avoid any ambiguity.

In many cases the chain of carbon atoms is branched so one must include the ...

Substituents Many compounds have substituents (additional atoms, or groups of atoms) attached to the chain. Their position is numbered according to a set of rules.

NOMENCLATURE - GENERAL RULES

Stem

• look for the longest chain of carbon atoms containing the functional group.

F322

- the carbon atoms must be in a continuous row.
- use prefixes as shown on previous page
- ending tells you what type of carbon structure you have; alkanes end in ANE
- **Side-chain** carbon based substituents are named before the chain name.
 - they have the prefix -yl added to the basic stem (e.g. CH₃ is methyl).
 - Number the principal chain from one end so that the side chain is attached to a carbon atom with the **lowest possible number**.

e.g. 2-methylhexane

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$$

If there is more than one side-chain the following rules apply:-

- side-chain names appear in alphabetical order i.e. butyl, ethyl, methyl, propyl.
- number the principal chain from one end to give the lowest numbers.
- each side-chain is given its own number.
- if identical side-chains appear more than once, prefix with di, tri, tetra etc
- numbers are separated from names by a HYPHEN **2-methylheptane**
- numbers are separated from numbers by a COMMA 2,3-dimethylbutane

Example

- longest chain 8 (it is an octane)
- 3,4,6 are the numbers NOT 3,5,6
- order is ethyl, methyl, propyl

$CH_{3} CH_{2} CH_{3} CH_{3} CH_{2} CH_{3} CH_{2} CH_{2}$

3-ethyl-6-methyl-4-propyloctane

5

6

ALKENES / ALCOHOLS

Length In alkenes and alcohols the principal chain is not always the longest chain.

AlkenesIt must contain the C=C bond. The name ends in -ENEAlcoholsIt must contain the OH group. The name ends in -OL

PositionAlkenesIndicated by the lower numbered carbon atom on one end of the
double bond. Count from one end to give lowest number.

 $CH_3-CH=CH-CH_2-CH_3$ is pent-2-ene (NOT pent-3-ene)

Alcohols Count from one end to give lowest number.

 $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$ is pentan-2-ol (NOT pentan-4-ol) OH

Side-chain Position is based on the number allocated to the C=C bond or OH group.

CH_3 I $CH_3 - CH_2 - C = CH_2$	CH ₃ OH CH ₃ -CH-CH-CH ₃
2-methylbut-1-ene	3-methylbutan-2-ol

Q.4Draw structures for . . .• 4-methylhex-2-ene• 3,3-dimethyloct-1-ene• 4-ethyl-3-methylhexan-1-ol

PERCENTAGE YIELD

- Yield the mass of a product obtained in reaction
- **Percentage** the mass of product obtained expressed as a percentage of what you ought to get assuming complete conversion
- Example 1 What mass of salicylic acid will make 5g of aspirin (assuming 100% conversion)?

Aspirin can be made by the reaction between salicylic acid and ethanoic anhydride. If one mole of each of the reactants is used the masses involved are...

In order to make 180g of aspirin you will need a minimum of 138g of salicylic acid.

If you only want 5g of aspirin you will need to scale the masses accordingly...

	3.833g salicylid	c acid	will pr	oduce	5g of aspirin
multiply by 5	5 x 138g/180	5 x 102	g/180	5 x 60g/18	0 5g
divide by 180	138g/180	102g/	180	60g/180	1g
molar scale	138g	10	2g	60g	180g

Example 2 When an experiment was carried out using 3.833g of salicylic acid, only 3.75g of aspirin was produced. What is the percentage yield of aspirin?

If there is a 100% yield then... 3.833g salicylic acid \longrightarrow 5g of aspirin If 3.75g of aspirin is made, the percentage yield = $3.75g/5g \times 100 = 75\%$

- **Q.6** The equation for the synthesis of N-ethyl ethanamide from ethylamine and ethanoyl chloride is $CH_3COCl + C_2H_5NH_2 \longrightarrow CH_3CONHC_2H_5 + HCl$
 - What mass of ethanoyl chloride is required to make 3g of N-ethyl ethanamide?
 - If only 1.8g are produced, what is the percentage yield?
- **Q.7** Ethyl ethanoate can be synthesised from ethanoyl chloride and ethanol. $CH_3COCl + C_2H_5OH \longrightarrow CH_3COOC_2H_5 + HCl$
 - What mass of ethanoyl chloride will react with 2.3g of ethanol?
 - If only 1g of ethyl ethanoate is produced, what is the percentage yield from 2.3g of ethanol?

7

F322

ATOM ECONOMY

Background • In most reactions you only want to make one of the resulting products

• atom economy is a measure of how much of the products are useful

ATOM ECONOMY = MOLECULAR MASS OF DESIRED PRODUCT x 100 SUM OF MOLECULAR MASSES OF ALL PRODUCTS

Example 1 Calculate the atom economy for the formation of 1,2-dichloroethane, C₂H₄Cl₂

$$C_{2}H_{4} + Cl_{2} \longrightarrow C_{2}H_{4}Cl_{2}$$

$$M_{r} 28 71 99$$

$$atom \ economy = \underline{molecular \ mass \ of \ C_{2}H_{4}Cl_{2} \ x \ 100} = \underline{99 \ x \ 100} = 100\%$$

$$\underline{molecular \ mass \ of \ all \ products} = \underline{99 \ x \ 100} = 100\%$$

Example 2 Calculate the atom economy for the formation of nitrobenzene, $C_6H_5NO_2$ C_6H_6 + HNO_3 $C_6H_5NO_2$ + H₂O 78 Mr 63 123 18 atom economy = molecular mass of $C_6H_5NO_2 \times 100 = 123 \times 100 = 87.2\%$ 141 molecular mass of all products

Notes

- addition reactions will have 100% atom economy
 - substitution reactions will have less than 100% atom economy
 - elimination reactions will have less than 100% atom economy
 - high atom economy = fewer waste materials
 - reactions may have a high yield but a low atom economy

Q.8 Calculate the atom economy of the following reactions (required product is in **bold**);

- $CH_3COCl + C_2H_5NH_2 \longrightarrow CH_3CONHC_2H_5 + HCl$
- C_2H_5Cl + NaOH \longrightarrow C_2H_5OH + NaCl
- C_2H_5Cl + NaOH \longrightarrow C_2H_4 + H_2O + NaCl

8

F322

F322

Elucidation of the structures of organic compounds - a brief summary

Introduction Traditionally, working out the identity was a long-winded process but, with the use of modern analytical instruments, the process is much quicker.

Elemental

composition The presence of carbon and hydrogen can be proved by letting the compound undergo combustion. Carbon is converted to carbon dioxide and hydrogen to water. Other elements can also be identified.

Percentage

- **composition** The percentage composition by mass is found by dividing the mass of an element present by the mass of the compound present, then multiplying by 100. Elemental mass of C and H can be found by allowing the substance to undergo complete combustion.
 - mass of carbon = 12/44 of the mass of CO₂ produced
 - mass of hydrogen = 2/18 of the mass of H₂O produced

Empirical

formula Gives the simplest ratio of elements present in the substance. It can be calculated by dividing the mass or percentage mass of each element present by its molar mass and finding the simplest ratio between the answers. Empirical formula is converted to the molecular formula using molecular mass.

Molecular

mass Nowadays **mass spectrometry** is used. The position of the last m/z signal is due to the molecular ion and gives the molecular mass. The fragmentation pattern also gives information about the compound.

Molecular

formula The molecular formula is an exact multiple of the empirical formula. Comparing the molecular mass with the empirical mass allows one to find the true formula.

if the empirical formula is CH (relative mass = 13) and the molecular mass is 78 the molecular formula will be 78/13 or 6 times the empirical formula i.e. C_6H_6 .

Structural

formula Because of the complexity of organic molecules, there can be more than one structure for a given molecular formula. To work out the structure, one can carry out different tests...

Chemical Use chemical reactions to identify the functional group(s) present.

Spectroscopy	IR	detects bond types due to absorbance of i.r. radiation
	NMR	gives information about the position and relative
		numbers of hydrogen atoms present in a molecule

Confirmation By comparison of **spectra** and **melting point or boiling point**.

9